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Abstract—We present a method to improve subpixel signal
detection in airborne or orbital image sequences. The proposed
technique recognizes stable inferest point features in multiple
overlapping frames. It estimates motion between consecutive
frames and tracks candidate detections over time. The final
detection decision combines signal strengths from multiple views
to improve sensitivity. The algorithm is computationally tractable
for real-time use on autonomous robotic platforms and space-
craft. Additionally, the interest points enable image-relative
localization, obviating the need to transmit the entire image and
reducing transmission bandwidth requirements by one or more
orders of magnitude. This permits higher acquisition rates and
potentially improved coverage for remote monitoring. Ground-
based systems can reconstruct absolute positions from landmarks
without measurements of sensor pose. We demonstrate the
algorithm using airborne 4m imagery from multiple overpasses
of a controlled wildfire.

Index Terms—Wildfire detection, Thermal Imagery, Smart
Cameras, Computer Vision, Pattern Recognition

I. INTRODUCTION

Ubpixel target detection uses intensity or spectral infor-

mation to find features that may subtend less than a full
image pixel. A wide range of science, surveillance and mon-
itoring applications involve subpixel detection from moving
platforms. Here we focus on early wildfire detection systems
using unpiloted spacecraft or aircraft to observe a large area
with thermal infrared cameras. Such systems can automati-
cally detect weak emissivity signals from small wildfires, and
automatically alert authorities for rapid containment. This can
mitigate damages, save lives, and preclude costly evacuations.
The sensitivity of automated detection is a key performance
bottleneck for such systems, and algorithmic improvements
can significantly benefit their overall performance.

Currently there are a wide range of detection methods based
on one or more 4um or 11pum channels [1]-[3]. The 4um
atmospheric window provides the best ratio of emissive to
reflective signal, and tests against longer wavelengths can
exclude false positives from sun glint or other artifacts. These
detection rules may also incorporate spatial information in the
form of adjacent pixels. Detection products typically analyze
individual image frames or single passes of linear pushbroom
cameras [4]-[7]. The BIRD system is a small-satellite fire
detection with multiple infrared bands [8]. The GOES ABBA
product offers wildfire detection, though its low spatial res-
olution is generally too small for early warning [9]. Some
recent research has used thermal images from different dates
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to detect temporal anomalies [10], [11]. Otherwise, detection
rules generally operate on each frame independently.

Our detection strategy augments these rules by exploiting
overlapping frames of image sequences. We hypothesize that
multiple frames could improve detection by effectively in-
creasing the detector integration time, and by providing several
opportunities to detect a flickering or intermittent source near
threshold. This work demonstrates a multiple-frame technique
for subpixel detection that is computationally tractable for
real time use onboard mobile platforms. As a side benefit,
the algorithm identifies landmark features that can localize
detections without needing to transmit the entire image or
know the precise sensor pose. This image-relative localization
can reduce transmission bandwidth requirements by one or
more orders of magnitude, enabling higher acquisition rates
and better coverage. Section II describes the multiple-frame
detection method. Sections III and IV show an experiment
using 4um aircraft overpass images of a controlled wildfire.
We conclude with remarks on applicability to airborne and
orbital detection systems.

II. METHOD

Our approach tracks scene content to estimate motion
and find projective geometric relationships between multiple
images. We take as a constraint that the method should be
automated. It should be feasible for field networks with limited
communications that cannot download a video stream for
pixel-wise coregistration on the ground. We withhold precise
knowledge of sensor position since such information may
not be available in the field. We assume that the scene is
approximately planar which is appropriate for a high-altitude
airborne or orbital view.

The procedure identifies stable, high contrast features, tracks
them across consecutive frames, and uses these correspon-
dences to estimates a homography that describes the ge-
ometric transformation between each adjacent image pair.
It then applies a single- or multiple-channel detection rule
independently to each image with a very lenient threshold. The
algorithm matches consecutive detections across potentially
large displacements, and associates them to form tracks, i.e.
unique physical events with a precise geographic location, that
may appear in multiple frames. Finally, the system considers
the entire sequence history in the final detection decision.

A. SIFT feature detection

Consider detection in a sequence of n partially-overlapping
frames. The first step identifies stable, high contrast image
locations known as interest points that can be recognized
easily across multiple views [12]. Here use Scale-Invariant
Feature Transform (SIFT) keypoint approach which is among



the most common and well-studied [13], [14]. We find these
locations with a Difference of Gaussians (DoG) operator at
multiple scales. Following the notation of [15], the DoG
operator applied to an image I at pixel coordinates (x,y) is a
difference of circular Gaussian filters G, and G, based on a
scale-dependent standard deviation ¢. The widths of the two
Gaussian filters differ by a constant ratio.

Dﬂ(xay):(GCJ(I7y)7G(T(I7y))*l(l’7y) (1)

We apply the filter several times, increasing filter widths by a
factor of two with each iteration. Peaks in this scale space
indicate interest points. We associate each with a 128 di-
mensional SIFT descriptor representing local statistics around
each interest point [13]. The descriptor is a histogram of
local image gradients; it is invariant to rotation and somewhat
robust against affine distortion. A nearest-neighbor matching
procedure finds candidate matches between frames [13]. The
end result of this first step is a list of candidate interest points
and descriptors in each frame. Figure 1 shows an example of
the best matches in two frames from our airborne dataset. We
ignore matches in bright burning areas whose appearance may
change independently of camera motion. In order to capture
the extra degree of freedom in three-dimensional location, we
express each point in homogeneous coordinates [16] as the
vector X = A[x,y,1]7 defined up to an arbitrary scale factor

Fig. 1.
as road crossings and recognizes them across changes in translation or
orientation. Over 500 such SIFT features were matched; for clarity we show
only the highest-scoring pairs.

SIFT features. The algorithm identifies informative locations such

B. Homography estimation

We use pointwise matches to estimate linear homographies
that map between pairs of frames in the image sequence [16].
Assuming a linear camera model and a planar scene, there is
a homography H relating an image point x to its position in
the following frame x’:
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Again this transformation is only unique up to a scalar factor
A. We fit the homography using matched interest points in
adjacent images. We define a column vector h = [h;hyhs]”
from the rows h; of H. For each interest point match 7,
equation 2 provides the following constraints on the new pixel
coordinates z’ and '
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Successive matches provide additional relationships that can
be written together in matrix form as the homogeneous linear
system Ah = 0. In practice, the projection is noisy and an
exact solution does not exist. Instead we find h to minimize
[lAL||, using the constraint ||h|| = 1 to avoid the trivial result
h = 0. The solution of this problem is the unit eigenvector
corresponding to the smallest eigenvalue of AT A [16].

Many of the initial matches are spurious so we use the
Random Sample Consensus (RANSAC) algorithm to identify
outliers [17]. RANSAC is an iterative approach that attempts
model fittings using many random subsets of the data. Each
trial selects a random subset of 4 interest point matches,
and fits a homography using just this subset. We score the
resulting projection using least-squares reconstruction error
between projected and actual interest points. Specifically we
count the number of inlier matches whose projection agrees
to observation within a small spatial tolerance. We refine the
best-scoring homography through nonlinear optimization with
the Nelder-Mead simplex algorithm [18]. The result is a set
of pairwise homographies relating neighboring frames.

C. Fire detection and tracking

Next, we apply any subpixel detection rule to each indepen-
dent frame to return a list of candidate detection locations. We
aim to combine these single-frame detections into a globally-
consistent list of tracks representing unique physical fires that
appear in multiple frames. Note that an obvious alternative
would simply co-register all frames into an image mosaic, as
in [15], prior to any detection. However, automated mosaics
may be more challenging with respect to onboard memory and
time. Moreover, performing a detection before the association
means we need only associate sparse clouds of subpixel
detections. This can be more error-tolerant than a pixel-wise
mosaic where consecutive frames must match exactly.

Solving the association requires determining the correspon-
dence between observed detections in consecutive frames. Rel-
evant algorithms include stable-marriage matching, methods
based on quadratic programming [19], and spectral analysis of
affinity matrices [20]. Here we use a simple greedy approach
that is efficient for scenes involving hundreds of fire pixels. We
build a list of detection tracks in chronological order beginning
with the first frame. We initialize a separate track for each
detection aj, and project each into the following frame:

a’ k A= Hak (4)

The apostrophe denotes that a’y is a virtual or projected
event rather than an observed hot pixel. We then match these
projected locations to each real hot pixel in the next frame,
denoted b;. We use a one-to-many association where a’j, could
pair with multiple instances b;, provided that the matched
detections all lie within an error radius 7. We find the best
matches a’, based on Euclidean distance:

a’, = argmin,||a’y — bj||, la'kx —b;|| <7 5)

A new track is formed including the entire signal/location his-
tory of a, along with the new instance b;. Any old detection
that projects to at least one observation in the subsequent



frame is considered to have been successfully merged with
other detection events; its track is removed from the list.
Unmatched detections maintain a list entry, and we propagate
these projections to the next round of forward projection and
association. Therefore fires that fail to match in just one frame
are not lost, and tracks can skip one or more frames. However
homography estimation is difficult for separated frames having
less spatial overlap, and we enforce a maximum skip interval:
any fire not matched after three successive frames cannot be
matched again. New fires enter near the edge of the advancing
field of view, and generate new tracks in the list. The end goal
of this process is a list of unique tracks, each associated with a
specific geographic location and appearing as a separate pixel
in at least one frame. We also record the signal levels in all
frames and note wherever a detection was expected but not
found (Figure 2).
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Fig. 2. Association of detections between two frames of the sequence. We
project detections aj,as,as in frame i to new locations a’y,a’s,a’s in
frame ¢ + 1. We associate each observed fire in frame % + 1 with the closest
matching projection, and any unmatched projections are recorded as absent.
If a new detection has no neighboring projection within error tolerance it
becomes a new track (e.g. detection by).

Finally, we classify each track using properties of its magni-
tude vector [g}, g2 ... ¢¥], where one or more of the elements
contains either a signal strength or a flag denoting no detection.
The initial detection rule use a lenient threshold so that even
very weak candidate fires have a chance of appearing in the
list. We incorporate multi-frame information using a hysteresis
threshold similar to the Canny edge detection algorithm [21].
Designers specify two thresholds 7, and 7». Any detection
strength above 7 is accepted, provided it appears above the
stricter threshold 75 in a neighboring frame. Thus, any pixel
with an intensity above 7o immediately triggers a detection,
while weak signals above 79 can still be recovered provided
they have sufficient support in other sequence frames.

III. EXPERIMENTAL APPROACH

A series of experiments evaluate multi-frame subpixel de-
tection for small wildfire detection. The tests consider an
experimental controlled wildfire in the wooded area surround-
ing Eglin Air Force Base, Florida. The main body of this
fire was over a kilometer in length. The fire evolved over
several hours, growing in intensity as it moved laterally across
the investigation area. In its wake, many hundreds of small
fires survived and continued burning well after the main fire

had passed. We use aerial overflight data collected by the
WASP instrument platform [22]. The instrument observed the
entire scene with multiple consecutive linear overflights over
the burning region. A cooled 4um Medium-Wave Infrared
(MWIR) camera mounted inside the aircraft collected 10-20
overlapping 640 x 512 pixel frames at a rate of approxi-
mately one frame per 4 seconds. The camera ground-sampling
distance (GSD) averaged 2.5 — 3m per pixel, and the scene
progressed by approximately 50 pixels across the short axis
in each subsequent frame (Figure 1).

We perform some initial filtering operations prior to sub-
pixel detection. We manually identify the first n frames at the
beginning of each overpass where fires do not appear; these
images do not show the burning area and we use them to
characterize background noise. First, we eliminate individual
bad pixels by averaging fire-free frames and comparing each
pixel’s average value to the mean. Any outliers are replaced
with the scene’s mean value. Second, we divide each pixel by
the average value of its column to remove column-wise noise
effects. Finally, we correct vignetting by fitting a radially-
symmetric low-degree polynomial to the image frames and
dividing by this flat-field image.

Our subpixel detection tests subsampling the cleaned high-
resolution images (Figure 3). We reduce image resolution by
a factor of 4 with bicubic interpolation. This proportional
averaging over geographic regions approximates observations
from a higher-flying platform, characterizing performance as
Ground Sampling Distance increases. We select six low-
resolution overpasses from the experiment for comprehensive
analysis. No special criterion was used to select the sequences,
apart from a general desire that they fall late in the experiment
when many small pixel-scale fires are present in the burn scar
(Figures 3 and 6).

Fig. 3.

Detail from original and subsampled images.

We evaluate performance for each sequence using the
frame that shows the most subpixel fires. The pixel intensity
of the high-resolution raw image clearly shows a bimodal
distribution corresponding to burning and non-burning pixels.
Visual inspection provides an obvious threshold that can be
used to identify burning areas in these high-resolution images,
and by extension, the locations of active subpixel fires in the
subsampled sequence. We label a pixel in the low-resolution
image as a burning pixel if it subtends any burning area.
We then perform single- and multiple-frame analysis with
a lenient setting of 7; at 2.5 standard deviations above the
mean. Varying the 7, threshold reveals different achievable
false positive and false negative rates for Receiver Operating
Characteristic (ROC) analysis.



IV. RESULTS

For all images analyzed the algorithm successfully identifies
a homography and tracks detections to within visual accuracy
(Figure 4). Figure 5 shows ROC curves illustrating detec-
tion performance for the six test sequences. Multiple frame
methods offer significant improvements in each case, with
better sensitivity for comparable false positive rates. Points
along each ROC curve represent different values of the 7
threshold. The curves to the lower right of each plot (e.g. the
“x” symbols) disregard multiple-frame information.

Figure 6 shows an example from sequence 6. Here we
display the high-resolution image for clarity, but all tracking
and detection uses the subsampled version. Small bright dots
correspond to the subpixel remnant fires. We set detection
thresholds so that the single- and multiple frame methods
achieve similar true positive rates. We use a threshold of 2.7¢
in the single-frame case (“x” markers), or 7 = 2.00, o =
3.30 in the multiple frame case (“0” markers), with thresholds
expressed as standard deviations above the mean. Red symbols
are false positives, which occasionally occur on bright regions
far from the burning area. For comparable false positive rates
the multiple-frame approach detects many more subpixel fires:
72% of total fire pixels with 22 false positives, compared
with 54% of total fire pixels with 36 false positives for the
single-frame approach. This result represents just one of many
possible settings that operators can choose depending on their
error tolerance. However, the ROC curves favor the multiple
frame method for all regimes.

V. DISCUSSION

These experiments support our hypothesis that multiple-
frame wildfire tracking can improve detection sensitivity.
However, the SIFT features also provide a valuable side bene-
fit: they could enable absolute georeferencing based on image
content if there is a suitable database of previous images from
the area. System designers could use an initial characterization
phase to acquire high-contrast SIFT descriptors along with
images of the (fire-free) surface. The ground system, with
possible human assistance, would determine these descriptors’
geographic locations. During regular operations the system can
query this database to find the geographic locations of new
scenes. Such a strategy could significantly reduce downlink
volumes, since the transmission need contain just the positions
and descriptors of the highest-contrast SIFT features along
with the image locations of the hot pixels in that frame.
This would provide sufficient information to geolocate a hot
pixel. All camera pose computations, cross-frame associations
and final detection decisions could take place on the ground,
though not necessarily requiring manual intervention after the
initial characterization phase. With such a system in place, the

Single Frame True Positives

Multiple Frame True Positives

Single Frame False Positives

Multiple Frame False Positives

Fig. 6. Detections in frame 15 of the final sequence. The high-resolution
image is shown, but the actual detection results are based on the subsampled
version. Small bright white dots are burning remnants of the large fire near
the top of the frame.

total bandwidth required for the frames in this study would
be approximately 30/ B per image. This represents an order-
of-magnitude reduction in downlink and could significantly
improve image acquisition rates for bandwidth-constrained
systems. It would also permit more flexible detection decisions
to be made with contextual or geographic information. For
example, the system could ignore specific regions that produce
sun glint, reflectance or other recurring false positive effects.

Several potential enhancements to this basic algorithm
could improve computational requirements and perhaps perfor-
mance. A natural alternative would treat detections as contigu-
ous connected regions, and match these regions across image
frames instead of individual pixels. This would dramatically
reduce the size of the correspondence problem and permit
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Fig. 5.
performance) ignore multiple-frame information.

application of more sophisticated matching techniques such as
spectral approaches [20]. Finally, more sophisticated methods
based on likelihood ratios could be used to merge the multiple
detections.
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